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and Institute of Theoretical Physics, Academia Sinica, PO Box 2735, Beijing 100080, 
People's Republic of China 
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Abstract. We give a complete description of q-deformation of SU(2) algebra in terms of 
symplectic geometry. The geometric meanings of such a deformation are manifestly shown 
at classical as well as at quantum level. As a model we study the classical and quantum 
dynamics of a particle with q-spin moving in electromagnetic fields in detail. 

1. Introduction 

The q-deformation, or the 'quantum group' of SU(2)  algebra, SU,(2), and its rep- 
resentations have been investigated by many authors [ I ,  21. It is usual to think that 
the q-deformations always emerge together with quantization of the systems character- 
ized by Planck's constant h§. In the classical limit h + O ,  the q-deformed algebraic 
relations reduce to the usual Lie algebraic relations. Very recently, however, one of 
us (HYG) and his collaborators have pointed out that this is not the case in principle 
[3]. By means of the classical harmonic oscillators, they realized the q-deformed SU(2) 
algebra at classical level, SU,,+,(2), as was denoted in [3], in the sense of classical 
Poisson brackets of deformed observables J: and J; based upon the undeformed phase 
space with undeformed symplectic form. After taking canonical quantization of the 
harmonic oscillators, they recovered the quantum q-deformed SU(2)  algebra, SU, , (2) ,  
whose generators, i.e. the quantum deformed observables J:, J;, are the same as the 
ones proposed in [4-71 based upon the q-deformed quantum harmonic oscillators. 

In this paper, we will observe this interesting discovery from a different angle. That 
is, instead of a concrete realization system such as the harmonic oscillators, we deal 
with the problem abstractly in the framework of the symplectic geometry of the intrinsic 
angular momentum space [8]. We find that the classical q-deformation of SU(2) 
algebra, SU,,_,(Z), can be realized by the deformed Poisson brackets given by the 
deformed symplectic form together with deformed observables and after geometric 
quantization based upon the deformed symplectic geometry, the quantum q-deforma- 
tion SU(2) algebra, SU, , (2) ,  can be reached as well. In  other words, we find a complete 
and systematic description of such an algebraic q-deformation at both classical and 
quantum levels based upon the symplectic geometry and its q-deformed version. 
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One of the advantages of the approach presented in this paper is that we may apply 
this q-deformed symplectic form for the intrinsic angular momentum to various cases. 
As an example, we study a model of a changed particle with q-deformed spin, which 
we call q-spin, moving in given external magnetic fields in some detail. 

The paper is organized as follows. In section 2, we study how to realize the classical 
q-deformation of SU(2) algebra, SUq,,-,(2), by means of the deformation of the 
symplectic geometry of the intrinsic angular momentum space rather than by means 
of the deformed ohservables on  undeformed phase space [3]. In section 3, we deal 
with the prequantization and polarization of the system based upon the deformed 
symplectic geometry and show the quantum q-deformed algebra SU, , (2 ) .  The model 
of a charged particle with q-spin moving in given magnetic fields is discussed in sections 
3 and 4. Finally, a few concluding remarks are given in section 5 .  

2. Symplectic geometry of SU,,,,,(Z) algebra 

The spin, as an intrinsic angular momentum, has a classical representation in the 
version of symplectic geometry [SI. For the usual spin vector S O =  (S , , ,  So,, So3) such 
that 

si, + s:, + si, = si (1 )  

where So is a given constant, there corresponds to a symplectic form 

and the Lagrange bracket for a free particle with spin SO is given by the symplectic form 

no =I dpi A dq'+ w O .  

On the one-parameter group of rotations around the ith axis there exist Hamiltonian 
vector fields Xso ,  with respect to oO 

By using the relation (1) it is easy to show that the following formulae are satisfied 

Xs", J WO = -dSo, 

wo(X.5 ,,,, XS",) = [So,,  S 0 , l P B  

[SO,, s O j l P B =  -xS,,,sOj = E,,kSOh 

and 

(4) 

where Xs,,, i oo denotes the left inner product of Xs , , ,  and w. Formula (4) is just the 
Poisson bracket of spin components. 

Now similar to what is discussed on the spin sphere St, + Siz+ Si7 = Si, let us 
consider the case on a q-deformed sphere, i.e. a q-spin sphere defined by 
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which is ‘flatter’ than the spin sphere ( l ) ,  where S, is a given constant and y = In 9, 
the deformation parameter taking values from zero to infinite. It is obvious that the 
q-spin sphere becomes the original spin sphere when y approaches zero. 

In this case the symplectic form for a free particle with q-sin S is 

Cl,=x dp, A dq’+w, 

where w y  is the symplectic form for the q-spin part 

dS, A dSz). 
tanh yS, 

Y 
S, dS2 A dS,+S2 dS3 A dS, + 

The Hamiltonian vector fields of Si with respect to w1 now take the forms 

a sinh2yS, J 

dSz 2sinh y asz xs, = s, - - 

sinh ZyS, J J 
s, - -- x -  

”- 2sinh y aS, JS, (7 )  

a J 

JS2 as, 
x g , =  s, --s2-. 

It should be noticed that the symplectic form w y  and the corresponding Hamiltonian 
vectors, according to the constraint of q-spin sphere (9, are subjected to the relations 

Xg, J w = -dS, 

[ X ,  2 X,I = -x[s,,s,lpB 

w ( X s , ,  X,)=[S,, S,Im 

which uniquely give rise to the Poisson brackets 

sinh 2yS3 
2 sinh y 

[St 9 S 2 1 P B  = 

[SI, S,lPB=--s2 

[ s z , ~ 3 1 P B = s , .  

Formulae (8) are just the q-deformed algebras of SU(2), that is 

. sinh ZyS, 
sinh y 

[S+, S - I P ,  = -1 

[S,, S,I,.=TiS, 
where S, = S, *isz. However it is realized at classical level in the sense that the Poisson 
brackets are defined by the q-deformed symplectic form w., in (6) .  It should be 
mentioned again that the approach to the classical q-deformed SU(2) algebra, denoted 
by SU,,_, , (2)  as in [3], presented in this paper is different from the one in [3] where 
the observables J:, J ;  are deformed and form SUq,h,u(2) algebra in the sense of 
Poisson brackets defined by the undeformed symplectic form, although the resultant 
q-deformed algebraic relations are the same. It is also notable that after deformation, 
y > O ,  a rotation symmetry around the third component is still preserved, i.e. there still 
exists a U ( l )  symmetry, although the SU(2) symmetry is broken. 
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3. Particle with q-spin and quantum q-deformed algebra SU,,,(2) 

In this section we discuss the symplectic geometry of non-relativistic charged particles 
with q-spins in given external electromagnetic fields and see a set of constraints, which 
lead to the quantum q-deformed algebra S U , , ( 2 ) ,  and which will be imposed on the 
q-spin value after quantization. 

The classical state of a non-relativistic particle with usual spin So> 0 is specified 
by the position q, the momentum p and the spin vector so. Hence the phase space 
under consideration is 

S-M Fei and H-Y  Guo 

X ,  = R3 x R' x St 

where Si denotes the sphere in R 3  of radius So. In a given external magnetic field B 
the energy in classical state ( p ,  q, So) is given by 

where e is the electric charge of the particle, B ( q )  the magnetic field and V ( q )  the 
electric potential. The corresponding symplectic form is 

1 3 
no= x d p i h d q ' + - e  cl lkBidq1ndqk+wO 

i = l  2 U* 

where wg is given by (2). 
For a non-relativistic particle with q-spin, its phase space becomes X = R 3  x R 3  x S:. 

Here S?, denotes the q-spin defined by (15). The Hamiltonian and symplectic forms 
now appear as 

P 2  e 
2m m 

H =-+ e V ( q )  -- S .  B ( q )  

where wI is the q-deformed symplectic form (6). 
Similar to the case in So ,  let L be the prequantization line bundle of ( X ,  C L ) .  The 

prequantization condition [SI is satisfied if and only if the de Rham cohomology class 
[-h-'CL] of -h-'R is integrable, where h is Planck's constant. Since B is globally 
defined and div B = 0, the second term on the right-hand side of (13) is an exact form. 
Therefore 

[ -h -Q]=[-h - '  %I 
Integrating the right-hand side of (13) over the q-spin sphere (01 x { O )  x St  C X ,  we have 

tanh yS, yS, - tanh yS, *Inh Y S d r ~ = + '  

r inh Y F I / I ~ = - R  
s,, w7 = -$ [ *v+ w (s: - 

Y y z  sinh y 

where V is the volume of the q-spin sphere, 

V =  dS, dS, dS1 
S. 



Therefore 

s i n h - ' ( m S , )  
Y 

Setting 

we get 

-K'  J e u y = 4 r ~ - 1 j f i = 2 j  (14) 

which must be an integer if [ - h - ' w , ]  is integrable. Equation (14) implies the first 
Chern number of the bundle L, which should be a n  integer. i.e. 2j  E Z and hence i is 
an integer or half integer. It is clear that the total q-spin S, now takes some special 
values according to j, 

sinh yj 
y sinh y 

S'=Jv. 

Formula (15) is just the eigenvalues of the Casimir operator of quantum algebra SU,(2) 
[ I ]  up  to aconstant factor (sinh y ly ) ' "  that can be removed by redefining the generators 
s,, s 2 ,  s,. 

It is worthwhile to note that using equations (1)-(5), if we apply a similar deforma- 
tion tu So as that to S,, we have a q-spin sphere 

(sinh yS,)' - (sinh yS,)' s:+s:+ - 
ysinh y ysinh y 

then from (15) the prequantization condition implies S, = j h .  

system we may define two open sets U+ and U- in X by 
In order to obtain certain polarization to fulfil the geometric quantization of the 

sinh yS, 
mg0j 

and introduce complex coordinates 

S, T is2 z -  
*-S, i s inh  y S J m '  

Then the q-deformed symplectic form wI becomes 

After the polarization being chosen such that the Hilbert space corresponding to q-spin 
is the holomorphic function of Z , ,  we may get the quantum expressions S, of operators 
S, in terms of Z,, z* and their derivatives, which give rise io, as in  the case of canonical 
quantization, the commutators of the quantum q-deformed algebra of Sti(2), S t i , , (2 ) ,  
as follows 

" *  sinh2yS3 
[S+,S-]=[2S,1= . sinh y 
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As the geometric meaning of q-deformation has been displayed explicitly at the 
classical and quantum levels, we will not investigate the quantum Hilbert space and 
operator expression in the framework o f  geometric quantization further. Rather, we 
will use the results of canonical quantization directly in the next section. 

4. The model of a particle with q-spin moving in magnetic fields 

The motion of a charged particle with usual spin So in an external electromagnetic 
field is described by the Hamiltonian (10) and the symplectic form (11). It is easy to 
find that, as is well known, the spin vector So rotates in the ith direction when 
Bi =constant and other components of B vanish. Such a motion may be described by 
triangular functions. However for a particle with q-spin, that is its spin components 

For a particle with q-spin, the Hamiltonian vector field of H with respect to the 
satisfy (51, things aie iaihei diEeiefit. 

symplectic form (13)  is given by 

sinh 2yS3 
i dq a m, e [( 2 s i n h y  

- 5 s  - ') J i ,  
XH = m-I cpi,-- B, 

-+ (BlS2- BpSI) - 
as, 

which satisfies 

X H J C L - d H  

[XH, X S , l F ' B = X I H . S , l p ~ .  

By using formula (18) it is easy to obtain the time-evolution equations of S, ,  

. dS 
S, = = [S,, HIpB = XHS, dt 

i.e. 

e 
$= -- (BIS ,  - B,S,) mC 

sinh 2yS,  
2 sinh y 

and aiso 
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Let us focus on equation (19) in several special cases. First, we take B ,  = B,=O, 
E ,=  constant. Equation (19) becomes 

e e 
me mc 

s , = o  S ,  = - B,S,  S 2 =  -- B,S, 

The solutions are 

s ,=~si~(*i3:+p) 

S2=Acos(w, t+p)  

S, = A'= constant 

where w, = eB,/mc,  A and are integral constants to be determined by initial condi- 
tions. That is the same as the situation of spin So except that A and A' should now 
satisfy the equation 

A2+(sinh YA')~ 
=S:.  

y sinh y 

For the case of B ,  = constant and B, = B, = 0, we have 

e . e sinhiyS, 
mc me 2sinh y 

S ,  = -- B l S 2  S , = o  S 2 = - B B ,  

With the help of (9, it is easy to find that 

S, =constant (22) 
cinh ?*,q. 
l..lll ,-, s, = -0, 
2 sinh y 

S2 = aS2 t bS: (23b) 

wherew, = e B , / m c ,  a =w:[(y/sinh y)+2y2(St-S:)]and b = 2 y 2 w : .  Integrating(23a) 
once we have 

(sinh 2yS,)' 

y sinh y 
+ c : w :  

Hence 

where C ,  and C, are integral constants. The integral in (24) can be transformed 
into standard elliptic integral if we set sinh yS,=JC:ysinhy[ and k 2 =  
C : y  sinh y / (  1 + C:y  sinh y ) ,  

Therefore 6 may be expressed by the elliptic function 
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and 
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When y+O, the solution ( 2 5 )  becomes 

s 2 = c , c o s ( w , f + c 2 )  

Similarly for (23b) ,  we have 

with C, and C, as integral constants. The equation P(S2) = 0 has the four solutions 

a l  = f ( k ,  + k2) P , = f ( k i - k d  

a2=f (k2  - k , )  P > = f ( - k i  - k 2 )  

where 

Hence 

.$ = sn [ d: k ,  ( f +k)] 
s -- 

2 - 2  
1 k,( k2- k,) +(k: - k:)C2 

k ,  - ( k ,  - k2).$' 

Here S,, C , ,  C 2 ,  C, and C, are subjected to the constraint ( 5 ) .  
Instead of triangular functions as in the case of So, we have seen that the motion 

is now described by elliptic functions sn and cn. When C,, C,, C, and C, are properly 
chosen the solutions of the motion become the ordinary ones at y + 0 by using the 
properties of sn and cn functions. 

Let us now consider the quantum dynamics of the particle with q-spin. In the 
Schrodinner representation, the quantum operator of Hamiltonian H can be expressed 
as 

where A is the magnetic potential vector, V the electric potential 
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As exposed to the ordina-y situation, the contribution from the spin is now changed 
to be ( e l m c )  2, E$,. Here S, have q-deformed eigenvalues and eigenstates as follows 
[1,91 

S , I j m ) =  m I j m )  

in which [XI = sinh yx/sinh y and + j  S m < j .  Having these q-deformed eigenvalue 
equations, we may solve the stationary Schrodinger equation. Clearly either when 
E ,  = E ,  = 0 and E ,  = constant or for the case y + 0, the eigenvalues of the Hamiltonian 
are the same as the usual ones obtained in the case of the particle with undeformed 
spin moving in the magnetic fields. 

5. Remarks 

We have manifestly shown the geometric origin of the q-deformation of SU(2) both 
at classical and quantum levels and discussed the effects of such a deformation on the 
dynamics of simple physical systems. 

It is of interest to notice that the deformation, defined by the transformation from 
spin sphere ( I )  to q-spin sphere (9, is closely related to quasiconformal transformations 
between these two Riemann surfaces. In fact, equation (16) may be regarded as the 
quasiconformal transformations between the undeformed set of coordinates and the 
deformed set if we eliminate S, with the help of ( 5 ) .  The situation, which is very similar 
to that which has been found in [3], may be studied further based upon the theory of 
quasiconformal transformations [IO]. 

It should also be pointed out that (5) is only one kind of deformation of the spin 
sphere. Other deformations may also be taken into account, say the deformations might 
occur along more than one direction and so on. And various deformed algebras could 
be obtained with respect to different deformations. What is more, the discussions above 
may be extended to the q-deformations of other semisimple groups. As the Casimir 
operator of SU(2) defines a spin sphere, certain Casimir operators of other semisimple 
groups also determine similar intrinsic manifolds. The deformations of these intrinsic 
manifolds could give rise to the deformations of their algebras. 

Finally, we would make some remarks on the deformation parameter y = log q. In 
this paper we have taken the deformation parameter y to be real. It is notable when 
y is the roots of unit. If y = iy' and y' is a real number, then the q-spin sphere becomes 

(sin y's,), 
y' sin y' 

$+Si+ = s;. 

It is of interest to see the roles of zeros in the triangular function. One of the 
consequences is that the commutation relation about 'spin' component S, and S2 may 
be broken at certain points of S, or 7'. Since in this case [S,, S 2 ]  =i(sin 2 y ' S , / 2  sin y') ,  
when S, = nr/ y' and n is an integer, one immediately gets [SI, S,] = 0. This indicates 
that at those points the structure of the classical phase space is broken and consequently 
both S, and S, can be measured simultaneously if the original quantum theory is still 
used at those points. Hence, the deformations such as (28) not only remarkably change 
the algebraic properties of SU(2) but also may raise some problems in both classical 
and quantum theory. All these and relevant subjects are under investigation. 
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